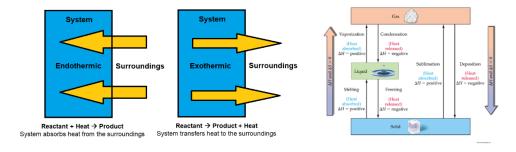
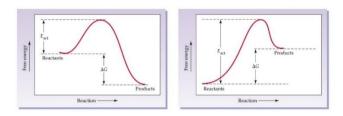

Salt Lake Community College, Chemistry Department

Chem 1110 Workshop 8


Topic: Thermodynamics

Objective:


- To be able to explain what factors influence energy loss or gain during reactions
- To understand the relationship between free-energy, enthalpy, and entropy changes in reactions
- To understand the concept of equilibrium and relate it to chemical reactions
 The First Law of Thermodynamics:

Endothermic and Exothermic Processes:

How Do Chemical Reactions Occur? Reaction Rates

Effects of Temperature, Concentration, and Catalysts on Reaction Rates:

Table 7.3 Effects of Changes in Reaction Conditions on Reaction Rates

	_
Change	Effect
Concentration	Increase in reactant concentration increases rate. Decrease in reactant concentration decreases rate.
Temperature	Increase in temperature increases rate. Decrease in temperature decreases rate.
Catalyst added	Increases reaction rate.

Practice problems:

1. True (T) or false (F)?

- a) If the heat is transferred from the surrounding to the system and the work is done by the surroundings on the system, $\Delta E > 0$ _____.
- 2. Indicate the sign of the enthalpy change, ΔH , in each of the following processes, P = constant:
 - a) Baking Bread
 - b) Burning a Candle
 - c) an ice cube melts
- 3. Calculate the change of internal energy of a system, ΔE , if 0.010 kJ of heat is added to this system and the system does 20 J of work on the surroundings. Be careful with the units!
- 4. Calculate the amount of heat transferred when 1.60 kg of CH₃OH(g) is produced during the following reaction

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g) \Delta H = -90.7 \text{ kJ}$$

5. Use ΔH° = -890 kJ to find the heat produced when 4.80 g of CH₄ gas is burned in O₂ at 25° C and 1 atm?

۵	Consider	tho	roaction	chown
О.	Consider	une	reaction	SHOWH.

$$N_2 + O_2 \rightarrow 2 \text{ NO}$$
 $\Delta H = 43.2 \text{ kcal}$

When 50.0 g of N₂ react, _____ kcal will be _____ (produced or consumed).

- 7. Write the equilibrium equations for the following reactions:
 - a) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$
 - b) $3O_2(g) \rightarrow 2O_3(g)$
- 8. For the following reaction: $PCl_5(g) \rightleftarrows PCl_3(g) + Cl_2(g)$ with $\Delta H^\circ = 90.0$ kJ in which direction will the equilibrium shift when: (possible answers: left, right, no shift)
- (a) Cl₂(g) is removed? _____
- (b) PCl₃(g) is added? _____
- 9. 2 Al₂O₃(s) \rightarrow 4 Al(s) + 3 O₂(g) Δ G = +138 kcal

Consider the contribution of entropy to the spontaneity of this reaction. As written, the reaction is ______, and the entropy of the system _____.

- a) spontaneous; increases
- b) spontaneous; decreases
- c) non-spontaneous; increases
- d) non-spontaneous; decreases
- e) non-spontaneous; does not change
- 10. Which statement best describes the way a catalyst works?
 - a) It decreases the value of ΔH .
 - b) It increases the value of ΔH .
 - c) It decreases the value of $\mathsf{E}_{\mathsf{act}}$.
 - d) It increases the value of Eact.
 - e) It increases the value of ΔG .