Salt Lake Community College, Chemistry Department

 Chem 1110 Workshop 11

 Chem 1110 Workshop 11
 Topic: Acids and Bases Part II

Objective:

- Buffer Solutions
- To be able to make calculations of titrations and concentration of acids
- Acidity and Basicity of Salt Solutions

Buffer: A combination of substances that act together to prevent a drastic change in pH ; usually a weak acid and its conjugate base

Acid- Base Titration:

> For the balanced equation: $\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Acidity and Basicity of Salt Solutions:

Table 10.4 Acidity and Basicity of Salt Solutions

Anion Derived from	Cation Derived from		
Acid That Is:	Base That Is:	Solution	Example
Strong	Weak	Acidic	$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$
Weak	Strong	Basic	$\mathrm{NaHCO}_{3}, \mathrm{KCH}_{3} \mathrm{CO}_{2}$
Strong	Strong	Neutral	$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
Weak	Weak	More information needed	

Practice Problems:

1. Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the pH in a solution prepared by dissolving 0.900 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water and diluting the solution to a final volume of 800 mL .
2. What is the pH of a solution prepared by dissolving 150.0 g KOH in enough water to make 7.867 L solution?
3. What volume of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is needed to titrate 200.0 mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq) to the neutralization point?
4. Calculate the pH of a buffer solution containing 0.015 M HClO and $0.025 \mathrm{M} \mathrm{ClO}^{-}$. The Ka_{a} for HClO is 3.0×10^{-8}.
5. For a solution of the weak acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$, state whether the $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ concentration will increase, decrease, or stay the same if: (There is no volume change in questions a, b, and c.)
(a) we add some $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (sodium acetate) \qquad .
(b) we add some HCl \qquad .
(c) we add some NaCl \qquad .
