Salt Lake Community College, Chemistry Department

Chem 1110 Workshop 11

Topic: Acids and Bases Part II

Objective:

- Buffer Solutions
- To be able to make calculations of titrations and concentration of acids
- Acidity and Basicity of Salt Solutions

Buffer: A combination of substances that act together to prevent a drastic change in pH; usually a weak acid and its conjugate base

Acid- Base Titration:

Acidity and Basicity of Salt Solutions:

Table 10.4	Acidity and	Basicity of	Salt Solutions

Anion Derived from	Cation Derived from		
Acid That Is:	Base That Is:	Solution	Example
Strong	Weak	Acidic	NH ₄ CI, NH ₄ NO ₃
Weak	Strong	Basic	NaHCO ₃ , KCH ₃ CO ₂
Strong	Strong	Neutral	NaCl, KBr, Ca $(NO_3)_2$
Weak	Weak	More information needed	
			Parman Inc.

Practice Problems:

1. Find $[H_3O^+]$ and the pH in a solution prepared by dissolving 0.900 g of Ca(OH)₂ in water and diluting the solution to a final volume of 800 mL.

2. What is the pH of a solution prepared by dissolving 150.0 g KOH in enough water to make 7.867 L solution?

3. What volume of 0.100 M NaOH (aq) is needed to titrate 200.0 mL of 0.200 M H_2SO_4 (aq) to the neutralization point?

4. Calculate the pH of a buffer solution containing 0.015 M HCIO and 0.025 M CIO-.

The K_a for HCIO is 3.0×10^{-8} .

5. For a solution of the weak acid $HC_2H_3O_2(aq)$, state whether the $H_3O^+(aq)$ concentration will increase, decrease, or stay the same if: (There is no volume change in questions a, b, and c.)

(a) we add some NaC₂H₃O₂ (sodium acetate) ______.

(b) we add some HCI _____.

(c) we add some NaCl _____.