Salt Lake Community College, Chemistry Department Chem 1110 Workshop 11 Topic: <u>Acids and Bases Part I</u>

Objective:

- Acids and Bases Definitions and Strengths
- To be able to use the pH scale and relate it to [H₃O⁺]

Arrhenius definition of an acid:

Bronsted Lowry Acid and Base:

- Brønsted-Lowry: acid donates H⁺ and base accepts H⁺.
- Brønsted-Lowry base does not need to contain OH-.
- Water can behave as either an acid or a base.

Acid and Bases Strength:

		Acid		Conjugate ba	ise		
Increasing acid strength	Strong acids: 100% dissociated	Perchloric acid Sulfuric acid Hydriodic acid Hydrobromic acid Hydrochloric acid Nitric acid	HCIO ₄ H ₂ SO ₄ HI HBr HCI HNO ₃	CI0 ₄ " H ₂ SO ₄ " I" Br" CI" NO ₃ "	Perchlorate ion Hydrogen sulfate ion Iodide ion Bromide ion Chloride ion Nitrate ion	Little or no reaction as bases	Increasing base strength
	Hydronium ion		H ₃ 0 ⁺	H ₂ O	Water		
	Weak acids	Hydrogen sulfate ion Phosphoric acid Nitrous acid Hydrofluoric acid Acetic acid	HS04 H ₃ P04 HN02 HF CH3C00H	S04 ²⁻ H ₂ P04 ⁻ N02 ⁻ F ⁻ CH3C00 ⁻	Sulfate ion Dihydrogen phosphate ion Nitrite ion Fluoride ion Acetate ion	Very weak bases	
	Very weak acids	Carbonic acid Dihydrogen phosphate ion Ammonium ion Hydrocyanic acid Bicarbonate ion Hydrogen phosphate ion	H ₂ CO ₃ H ₂ PO ₄ NH ₄ ⁺ HCN HCO ₃ HPO ₄ ²	HCO3 HPO4 ² NH3 CN CO3 ² PO4 ³	Bicarbonate ion Hydrogen phosphate ion Ammonia Cyanide ion Carbonate ion Phosphate ion	Weak bases	
		Water	H ₂ O	он-	Hydroxide ion	Strong	

Conjugate Acid-Base Pairs:

Practice Problems:

- 1. When acids and bases react the product other than water is a
 - a) hydrogen ion.
 - b) hydroxide ion.
 - c) hydronium ion.
 - d) metal.
 - e) salt.
- 2. A Brønsted-Lowry acid is a substance which
 - a) produces hydrogen ions in aqueous solution.
 - b) produces hydroxide ions in aqueous solution.
 - c) donates protons to other substances.
 - d) accepts protons from other substances.
 - e) accepts hydronium ions from other substances.
- 3. A Brønsted-Lowry base is a substance which
 - a) produces hydrogen ions in aqueous solution.
 - b) produces hydroxide ions in aqueous solution.
 - c) donates protons to other substances.
 - d) accepts protons from other substances.
 - e) accepts hydronium ions from other substances.
- 4. Which of the following cannot act as a Brønsted base?
 - a) HCO_3^-
 - b) CO₃²⁻
 - c) NH₃
 - d) NH₂⁻
 - e) NH4+

5. Classify each of these solutions as Brønsted-Lowry acid or base.

CN-	
HCIO ₄	
PO4 ³⁻	
HBr	

6. Give the formula of:

(a) the conjugate base of this acid C₂H₅NH₃⁺: _____.

(b) the conjugate acid of this base H₂PO₄⁻ : ______.

7. What is the pH of a 0.01 *M* solution of HCI?

8. Find [H⁺] in a solution with pH 5.43.

9. What is the pH of a 0.0032 *M* solution of NaOH?

10. A cleaning solution is found to have $[OH^{-}]$ of 1 x 10⁻³ M. What pH is this?