Salt Lake Community College, Chemistry Department
 Chem 1110 Workshop 7
 Topic: Mole and Mass Relationship

Objective

- Molecular and Empirical Formula
- Molecular Weight
- Stoichiometry
- Grams of reactants converted to moles and Moles of product converted back to grams
- Calculation of relative quantities of reactants and products

Molecular and Empirical Formula

1. Empirical formula: the formula of a compound with the simplest whole number ratio of elements involved in the compound- Empirical Formula for Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is $\mathrm{CH}_{2} \mathrm{O}$
2. Molecular formula: the types and actual number of atoms in a compound Glucose ($\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$)

Molecular Weight vs. Formula Weight

- Given the molecular formula of a compound, we find the molecular weight by finding the sum of the masses of all the atoms in the compound
- The mass of individual atoms is found on the Periodic Table and is given in amu
- Examples

1. Sodium chloride: $22.99 \mathrm{amu}+35.45 \mathrm{amu}=58.44 \mathrm{amu}$

Stoichiometry

- As defined by Ebbing "calculation of the quantities of reactants and products involved in a chemical reaction"
- Note: a balanced chemical equation is essential to stoichiometry; a knowledge of molar masses is often also necessary

Grams to moles, mole to mole and Moles to grams conversion:

Practice Problems:

1. Please fill the following tables

Molecular Compounds	Molecular Weight
Cl_{2}	
$\mathrm{H}_{2} \mathrm{O}$	
NH_{3}	

Ionic Compounds	Formula Weight
NaCl	
MgBr_{2}	
BaS	

1 Mole	Molar Mass
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right) 2$	
Br	

3. Convert 54.0 g of $\mathrm{H}_{2} \mathrm{O}$ to moles of $\mathrm{H}_{2} \mathrm{O}$.
4. Find the mass of 0.647 moles of CO_{2}.
5. How many moles of Ca^{2+} and Cl^{-}ions are there in 1 mole of CaCl_{2} ?
6. How many moles of copper would be produced from 6 moles of copper (I) oxide according to the following equation:

$$
\mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}+2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow 6 \mathrm{Cu}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

7. If 30.4 grams of CO_{2} can be produced in the reaction of $\mathrm{C}_{2} \mathrm{H}_{2}$ with O_{2} to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, how many grams of $\mathrm{H}_{2} \mathrm{O}$ can be produced in the reaction?
8. Elemental iron is produced according to the following reaction:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Al}(\mathrm{~s})--->\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{~s})
$$

If $5.34 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ is allowed to react with excess Al , what is the theoretical yield of elemental iron for this reaction?

