Salt Lake Community College, Chemistry Department

Chem 1110 Workshop 7

Topic: Mole and Mass Relationship

Objective

- Molecular and Empirical Formula
- Molecular Weight
- Stoichiometry
- Grams of reactants converted to moles and Moles of product converted back to grams
- Calculation of relative quantities of reactants and products

Molecular and Empirical Formula

- Empirical formula: the formula of a compound with the simplest whole number ratio of elements involved in the compound- Empirical Formula for Glucose (C₆H₁₂O₆) is CH₂O
- 2. Molecular formula: the types and actual number of atoms in a compound Glucose (C₆H₁₂O₆)

Molecular Weight vs. Formula Weight

- Given the molecular formula of a compound, we find the molecular weight by finding the sum of the masses of all the atoms in the compound
- The mass of individual atoms is found on the Periodic Table and is given in amu
- Examples
 - 1. Sodium chloride: 22.99 amu + 35.45 amu = 58.44 amu

Stoichiometry

- As defined by Ebbing "calculation of the quantities of reactants and products involved in a chemical reaction"
- Note: a balanced chemical equation is essential to stoichiometry; a knowledge of molar masses is often also necessary

Grams to moles, mole to mole and Moles to grams conversion:

Practice Problems:

1. Please fill the following tables

Molecular Compounds	Molecular Weight
Cl ₂	
H ₂ O	
NH ₃	

Ionic Compounds	Formula Weight
NaCl	
MgBr ₂	
BaS	

1 Mole	Molar Mass
Mg(NO ₃) ₂	
Br	

- 3. Convert 54.0 g of H_2O to moles of H_2O .
- 4. Find the mass of 0.647 moles of CO₂.
- 5. How many moles of Ca^{2+} and Cl^{-} ions are there in 1 mole of $CaCl_2$?
- 6. How many moles of copper would be produced from 6 moles of copper (I) oxide according to the following equation:

$Cu_2S_{(s)} + 2Cu_2O(s) \rightarrow 6Cu(s) + SO_2(g)$

7. If 30.4 grams of CO₂ can be produced in the reaction of C_2H_2 with O₂ to form CO₂ and H₂O, how many grams of H₂O can be produced in the reaction?

8. Elemental iron is produced according to the following reaction:

$$Fe_2O_3(s) + AI(s) - AI_2O_3(s) + Fe(s)$$

If 5.34 g Fe₂O₃ is allowed to react with excess AI, what is the theoretical yield of elemental iron for this reaction?