Salt Lake Community College, Chemistry Department

Chem 1110 Workshop 6- part II

Topic: Chemical Equations

Objective:

- To be able to determine oxidation numbers of atoms and determine which substances are being reduced and which oxidized in a reaction
- To be able to recognize spectator ions and write net ionic equations

Solubility Rules:

- **Rule 1:** ionic compounds with Group I cations (Na^{+,} K⁺, Li⁺) and ammonium ion (NH₄⁺) are always soluble. Regardless of anion, if an ionic compound has one of these cations, it will *always* be soluble.
- **Rule 2:** ionic compounds with acetate ion (C₂H₃O₂-), nitrate ion (NO₃-), and perchlorate (ClO₄-) as anions are always soluble.
- **Rule 3:** ionic compounds with halogens (group 7A) as anions are always soluble unless the cation is Ag+, Hg²⁺, or Pb²⁺ ****Note: Don't forget these exceptions!
- **Rule 4:** ionic compounds with sulfate (SO₄²⁻) as an anion are always soluble unless the cation is Ag+, Hg²⁺, Pb²⁺, Ca²⁺, Sr²⁺, or Ba^{2+.}
- **Rule 5:** ionic compounds with carbonate (CO₃²⁻), phosphate (PO₄³⁻), sulfide (S²⁻), and hydroxide (OH⁻) as anions are always insoluble unless the cation is a Group 1 cation or ammonium ion or unless the compound is a strong base.

Molecular, lonic and net ionic equations:

- a) Chemical equations are a shorthand way of describing a chemical reaction
- b) There are different types of chemical equations
 - 1. Molecular equations all reactants and products are written as complete molecules even though they may exist as ions in solution
 - 2. Complete ionic equations strong electrolytes are written as ions if they are in aqueous solution
 - 3. Net ionic equations spectator ions are canceled and the actual reaction that takes place is left

Practice Problems:

- 1. Which of the following is **not** soluble in water?
 - a) potassium sulfide
 - b) iron(II) bromide
 - c) iron(III) hydroxide
 - d) iron(III) nitrate
 - e) ammonium sulfate
- 2. Complete and balance the following reactions.

 $Ca(NO_3)_2(aq) + Na_3PO_4(aq) \rightarrow$

Molecular equation:

Ionic Equation:

Net Ionic Equation:

3. Write and balance the following acid-base neutralization reaction:

a) H₃PO₄ (aq) + Mg(OH)₂ (aq) \rightarrow

Molecular equation:

Ionic Equation:

Net Ionic Equation:

4. An aqueous solution of calcium chloride is allowed to react with an aqueous solution of sodium carbonate, and a precipitate form. Identify the solid in the balanced equation.

- 5. Complete and balance each of these reactions? If no reaction occurs write "no reaction."
 - a. $Zn(NO_3)_2$ (aq) + $(NH_4)_2S$ (aq) \rightarrow
 - b. Na₂CO₃(aq) + AgNO₃ (aq) \rightarrow
 - c. Ca(OH)₂ (aq) + HCl (aq) \rightarrow
 - d. C₅H₁₂ + O₂ (aq) \rightarrow
- 6. The oxidation number of iron in the compound FeBr₃ is
- a) -2.
- b) -1.
- c) +1.
- d) +2.
- e) +3.
- 7. The oxidation number of sulfur in calcium sulfate, CaSO₄, is
- a) +6.
- b) +4.
- c) +2.
- d) 0.
- e) -2.