Salt Lake Community College, Chemistry Department

Chem 1110 Workshop 6 - Part I

Topic: Chemical Equations

Objective:

- Balancing chemical reactions
- Ways to classify the chemical reactions
- Strong, weak and non-electrolytes

Balancing Chemical Reactions:

- 1. Remember mass balance!
- 2. Use the Periodic Table and a knowledge of polyatomic formulas and charges to select the ratios of ions and how they go together (Empirical Formula)
- 3. There is a difference between the subscripts in molecular formulas and the coefficients of balanced chemical equations

Ways to classify chemical Reactions:

Strong, weak and non-electrolytes:

- 1. Strong electrolytes dissociate (ionize) ~100%. This includes all ionic compounds and strong acids and bases.
- 2. Weak electrolytes dissociate less than 100%, usually 1-10% or less. The most common weak electrolytes are the organic acids

3. Nonelectrolytes - do not dissociate. This includes all covalent compounds except organic acids and bases

	strong electrolytes	weak electrolytes	non-electrolytes
general	all ionic compounds		nearly all organic compounds except organic acids and bases; most binary covalent compounds
acids	strong acids: HCl, HBr, HI, HNO ₃ , H ₂ SO ₄ , HClO ₄	weak acids: H ₂ O, HF, H ₃ PO ₄ , H ₂ CO ₃ , H ₂ SO ₃ , H ₂ S, all organic acids, usually any acid not named as a strong acid	
bases	strong bases: all Group I and Group II hydroxides	weak bases: ammonia (NH ₃), NH ₄ OH, amines, organic bases (usually contain C, H, N in molecular formula), usually any base not named as a strong base	

Practice Problems:

- 1. Which statement regarding balanced chemical equations is not true?
 - a) The number of each kind of atom must be the same on each side.
 - b) Coefficients are used in front of formulas to balance the equation.
 - c) Subscripts may be changed to make an equation simpler to balance.
 - d) When no coefficient is written in front of a formula, the number "one" is assumed.
 - e) Reactants are written to the left of the arrow.

2. Balance the following reactions:

- a. N₂ (g) + H₂ (g) \rightarrow NH₃ (g)
- b. Al (s) + $O_2(g) \rightarrow Al_2O_3(s)$
- c. $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- d. N₂ (g) + H₂ (g) \rightarrow NH₃ (g)
- e. $Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$
- 3. Which is the correct equation for the reaction of magnesium with hydrochloric acid to produce hydrogen and magnesium chloride?
 - a) Mg + 2 HCl \rightarrow H₂ + MgCl₂
 - b) Mg + HCl \rightarrow H + MgCl

- c) 2 Mg + 6 HCl \rightarrow 3 H₂ + 2 MgCl₂
- d) Mg + 2 HCl \rightarrow 2 H + MgCl₂
- e) Mg + 3 HCl \rightarrow 3 H + MgCl₂
- 4. Which reaction is an example of an acid-base reaction?
 - a) $H_2CO_3(aq) \rightarrow H_2O(l) + CO_2(g)$
 - b) $H_2SO_4(aq) + Ca(OH)_2(aq) \rightarrow CaSO_4(aq) + 2 H_2O(I)$
 - c) 6 HCl(aq) + 2 Al(s) \rightarrow 2 AlCl₃(aq) + 3 H₂(g)
 - d) $FeCl_3(aq) + 3 \text{ KOH}(aq) \rightarrow Fe(OH)_3(s) + 3 \text{ KCI}(aq)$
 - e) 2 Hg(l) + $O_2(g) \rightarrow 2$ HgO(s)
- 5. The following reaction can be classified as what type(s) of reaction(s)?

2 Al(OH)₃(aq) + 3 H₂SO₄(aq) \rightarrow Al₂(SO₄)₃(s) + 6 H₂O(l)

- a) precipitation
- b) acid-base neutralization
- c) redox reaction
- d) combustion
- e) both A and B
- Classify the following as a precipitation, an acid-base neutralization, or a redox reaction.
 - a) $Ca(OH)_2(aq) + 2HBr(aq) \rightarrow 2H_2O(l) + CaBr_2(aq)$
 - b) $Pb(ClO_4)_2(aq) + 2NaCl(aq) \rightarrow 2PbCl_2(s) + 2NaClO_4(aq)$
 - c) $2AgNO_3(aq) + Cu(s) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$