- 1) Where does the Calvin cycle take place?
 - A) stroma of the chloroplast
 - B) thylakoid membrane
 - C) cytoplasm surrounding the chloroplast
 - D) interior of the thylakoid (thylakoid space)
 - E) outer membrane of the chloroplast
- 2) When oxygen is released as a result of photosynthesis, it is a direct by-product of
 - A) splitting water molecules.
 - B) chemiosmosis.
 - C) the electron transfer system of photosystem I.
 - D) the electron transfer system of photosystem II.
- 3) What does the chemiosmotic process in chloroplasts involve?
 - A) establishment of a proton gradient across the thylakoid membrane
 - B) diffusion of electrons through the thylakoid membrane
 - C) reduction of water to produce ATP energy
 - D) movement of water by osmosis into the thylakoid space from the stroma
 - E) formation of glucose, using carbon dioxide, NADPH, and ATP
- 4) Where are the molecules of the electron transport chain found in plant cells?
 - A) thylakoid membranes of chloroplasts
 - B) stroma of chloroplasts
 - C) outer membrane of mitochondria
 - D) matrix of mitochondria
 - E) cytoplasm
- 5) The reactions that produce molecular oxygen (O2) take place in
 - A) the light reactions alone.
 - B) the Calvin cycle alone.
 - C) both the light reactions and the Calvin cycle.
 - D) neither the light reactions nor the Calvin cycle.
 - E) the chloroplast, but are not part of photosynthesis.
- 6) What is the primary function of the Calvin cycle?
 - A) use ATP to release carbon dioxide
 - B) use NADPH to release carbon dioxide
 - C) split water and release oxygen
 - D) transport RuBP out of the chloroplast
 - E) synthesize simple sugars from carbon dioxide
- 7) Which of the following statements best represents the relationships between the light reactions and the Calvin cycle?
 - A) The light reactions provide ATP and NADPH to the Calvin cycle, and the cycle returns ADP, \mathbb{P}_{i} , and NADP+ to the light reactions.
 - B) The light reactions provide ATP and NADPH to the carbon fixation step of the Calvin cycle, and the cycle provides water and electrons to the light reactions.
 - C) The light reactions supply the Calvin cycle with CO₂ to produce sugars, and the Calvin cycle supplies the light reactions with sugars to produce ATP.
 - D) The light reactions provide the Calvin cycle with oxygen for electron flow, and the Calvin cycle provides the light reactions with water to split.
 - E) There is no relationship between the light reactions and the Calvin cycle.

8) All of the events listed	d below occur in the	light reactions of p	hotosynthesis except		
A) oxygen is produced.		Е	B) NADP+ is reduced to NADPH.		
C) carbon fixation.		Γ	D) ADP is phosphorylated to yield ATP.		
B) P700 reaction-c	ght energy by chlord enter chlorophyll. drogen electrons fro	ophyll.	·		
10) Which of the followin A) CO ₂ B) ATP C) RuBP D) A and B only E) A, B, and C	g is (are) required ir	n the Calvin cycle?			
11) One carbon dioxide mequired for the synth			vin cycle. How many tu	rns of the cycle are	
A) 1	B) 2	C) 3	D) 6	E) 12	